Electromagnetic Waves

In this lecture

- \star Introduction
- ★Photons
- ★Electromagnetic spectrum
- ★ Wave-particle duality
- *Matter & Energy

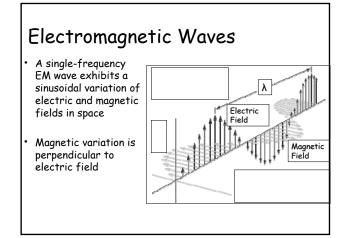
Waves

Mechanical waves

 Transport energy by mechanical displacement of particles in a medium

Electromagnetic waves

- Transport energy form through empty space
- How is the energy transferred?


Speed of Electromagnetic Waves

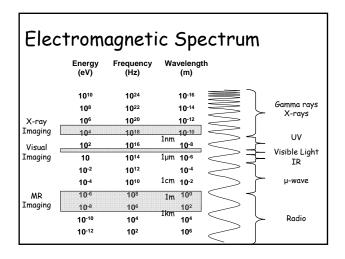
Mechanical Waves

- Transmission via a medium
- Velocity of wave governed by mechanical properties of medium

Electromagnetic Waves

- Requires no medium to transmit
- Velocity is constant

Electromagnetic Waves


- EM waves transport energy through space
- Energy is stored in the propagating electric and magnetic fields

Photons

- A *photon* is the smallest quantity of ANY type of electromagnetic radiation
- Can be pictured as a small bundle of energy travelling through space at the speed of light

Electromagnetic Spectrum

- Frequency Range: 10 10²⁴ Hz
- Wavelength Range: 10⁶ 10⁻¹⁶ m
- Three regions relevant to medical imaging
 - 1. X-radiation
 - 2. Visible
 - 3. Radiofrequency

Measurement of EM Radiation

Frequency, Wavelength & Energy

- Radio: measured via oscillations of electrons in conductors
 - Quoted in Hz
- Visible light: Early experiments describe light as a wave
 - Quoted in meters
- X-rays produced using electric potential
 - Quoted in keV

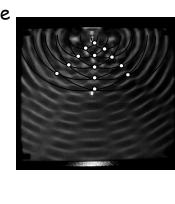
Wave Particle Duality

- Photons are quanta of radiation, which have energy

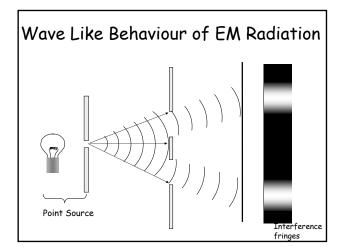
 Particles
- Electromagnetic Radiation is characterised by frequency and wavelength
 - Waves

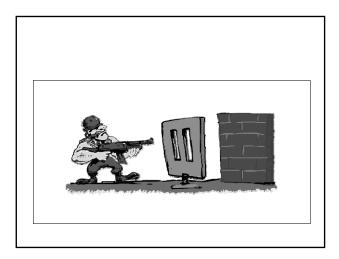
Wave Particle Duality

- Photons interact with matter most easily when the matter is approximately the same size as the photon wavelength
- What is the size of particles in matter?


Wave Particle Duality

- Photons from different regions of the spectrum are fundamentally the same
- Difference in frequency results differences in the way photons interact with matter
- Visible photons behave more like waves
 X-ray photons act more like particles


Wave Like Behaviour of EM Radiation

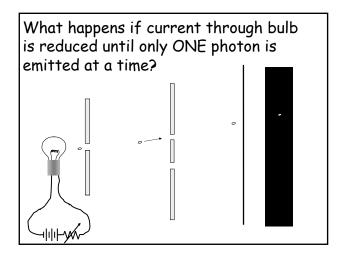

Interference

 This effect can also be observed for mechanical waves

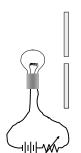
Particle Behaviour or EM Radiation

- X-rays are identified by their energy (1 - 50MeV)
- Wavelength range: 10⁻¹⁰ 10⁻¹²m
- Usually smaller than objects!
- Therefore usually behave as particles

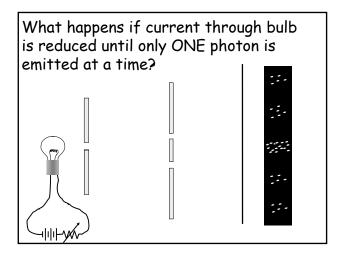
Planck's Quantum Theory

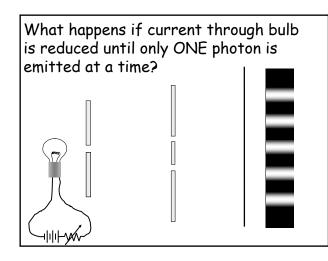

- X-ray photons are characterised by energy
- Planck developed relationship between energy and frequency

$$E = hf$$


• h is Planck's constant 6.63 X 10⁻³⁴ Js⁻¹

Example:


What is the frequency of a 100keV x-ray photon?



What happens if current through bulb is reduced until only ONE photon is emitted at a time?

Matter & Energy <u>Classical Physics</u> • Matter can neither be created nor destroyed – Conservation of matter • Energy can neither created nor destroyed – Conservation of energy

Matter & Energy

- Planck & Einstein extended classical theories
- Matter can be transformed into Energy and vice versa

$$E = mc^2$$

Example

PET scanner

When positron-electron annihilation occurs what are the energies of the two photons produced?

Summary

- ★What are electromagnetic waves
- ★Photons
- *Electromagnetic spectrum
- ★Wave-particle duality
- ★Matter & Energy

Practice Questions

PAM2011: Lecture 11 Problem Sheet

- 1. What is the energy in Joules of a 50keV x-ray photon?
- 2. What is the frequency of a 50keV x-ray photon?
- 3. What is the wavelength of a 50keV x-ray photon?
- 4. What is the mass equivalence of a 50keV X-ray photon?
- 5. Calculate the energy of a 400nm photon?